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The Role of Backbond Strain in Silicon Surfaces

on the Decomposition of NH 3 and PH3

M.L. Colaianni, P.J. Chen and J.T. Yates, Jr.

Surface Science Center
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

Silicon adatoms on the Si(lI l)-(7x7) surface form strained Si-Si backbonds

with underlying silicon atoms. The strain at adatom sites causes both NH2(a) and

PH2(a) to be thermally unstable compared to the same species on the Si(100)-

(2x1) surfaces which contains less-strained silicon surface atoms. The surface

strain induces enhanced NH2(a) and PH 2(a) dissociation on Si(l 1I1)-(7x7) adatom

sites compared to Si(100)-(2xl). Thus both NH2(a) and PH2(a) can participate in

recombination reactions on Si(100) to produce major amounts of NH3 (g) and

PH3(g) above 600 K; such reactions are absent on Si(1 1 )-(7x7) surfaces.
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The Role of Backbond Strain in Silicon Surfaces

on the Decomposition of NH3 and PH3

M.L. Colaianni, P.J. Chen and J.T. Yates, Jr.

Surface Science Center
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260

The behavior of chemisorbed species on silicon single crystals is expected

to be influenced by the crystal structure of the surface. In this report, two group V

hydrides, NH 3 and PH3, have been compared on Si(100)-(2xI) and Si(l I 1)-(7x7)

surfaces, and we report an important common phenomenon governing the

mechanism of thermal decomposition of these chemisorbed molecules. The Si-Si

backbond strain effect on Si(l 11) is found to govern adsorbate decomposition.

This concept may also apply to other semiconductor surfaces and could be

significant in governing semiconductor doping and a wide variety of thin film

formation processes.

On both Si(100) and Si(1 11) surfaces, NH 3 and PH3 molecules adsorb

dissociatively at - 100 K to produce NH2(a) [1-6] and PH2(a) [7-10] species.

These species have been detected by vibrational spectroscopic methods. In

addition, at higher surface coverages, undissociated NH3(a) and PH3(a) molecules

are also populated. On Si(1 11)-(7x7), both NH2(a) and PH2(a) species

decompose at higher temperatures, eventually producing chemisorbed N(a) and

P(a) along with desorbing H2(g) [1,2,7,8,10]. In contrast, on Si(100)-(2xl), a

major recombination process, kinetically competitive to dissociation, occurs at

about 500 - 600 K [ 1,3,4,8], as shown by equation 1.

3



Si(100)

XH2(a) + H(a) -- XH3(g) [X = N,P] (1)

This recombination process reduces the effectiveness of Si(100) to produce N(a)

or P(a) species from XH3 compared to Si(I 11).

Figure I shows a comparison of the NH 3 and PH 3 temperature

programmed desorption from both (100) and (111) silicon surfaces. Both surfaces

weakly bond some NH 3 or PH 3 , and desorption of these molecular adsorbates

occurs below 300 - 500 K. However, for Si(100)-(2xl) in the temperature range

600 - 700 K, the evolution of additional XH3(g) is also observed (cross hatched).

XH3 is not evolved from Si(1 1 )-(7x7) in this temperature range as shown in

Figure 1. In the case of both NH2 and PH2 adsorbed on Si(100)-(2xl) containing

some adsorbed D(a), recombined XH 2D(g) is the major species produced in the

600 - 700 K range [3,4,8]. This confirms that the surface recombination process

shown in equation I occurs on Si(100)-(2xl) but not on Si(1 1 )-(7x7). For

NH 2(a) on Si(100), we estimate that about 73% of the nitrogen from NH2(a) is

evolved according to equation 1 [1].

The question therefore is why XH2(a) species participate in recombination

reactions on Si(100)-(2x1) but not on Si(l 1l)-(7x7). This difference in surface

behavior of XH2(a) species on the two silicon surfaces is postulated to be due to

the special nature of Si adatom surface sites on Si(1 1 1)-(7x7). These sites cause

the facile decomposition of adsorbed XH2(a) species, and this decomposition

reaction competes effectively with the XH2(a) + H(a) recombination reaction

process shown in equation (1).
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Figure 2 shows the two major types of Si sites on Si(l I )-(7x7) - an adatom

site containing XH2(a) [X=N;P] and a restatom site. In addition, XH2(a) on

Si(100)-(2xl) is shown. The adatom site involves considerable Si backbond strain

(4 member Si ring structures beneath the adatom), whereas less backbond strain is

present at the rest atom site (6 member Si rings) (11,12], or on Si(100). The

backbond strain effect at the Si adatom site is postulated to cause X-H bond

scission in XH2(a), followed by the insertion of the X-H species into the broken

backbond as shown in Figure 2. This results in the thermal instability of the XH 2

species on a Si adatom site compared to XH2 on a Si rest atom site or on a Si2

diwer site on Si(100)-(2xl), both of which sites involve less strain [11-13].

Vibrational spectroscopic studies for NH2(a) on Si(l I I)-(7x7) identify the

production of NH(a) + H(a) and indicate that NH2(a) is thermally unstable [-600

K decomposition] compared to NH2(a) on Si(100)-(2xl) [>600 K decomposition].

A similar relative instability is observed for PH2(a) on Si(l 11) compared to

Si(100), as seen by vibrational spectroscopy [7,8]. Thus, it is the thermal

instability of XH2 (a) species on Si(l 11) adatom sites which leads to the absence of

the recombination process to produce XH3(g).

Similar effects of backbond strain are likely to occur for many

semiconductor-adsorbate systems, as has already been reported for example for

hydrogen etching of Si(l 1 )-(7x7) [14,15]. Thus, chemistry at the surface of

covalent solids can be profoundly influenced by local bond strain effects at the

dangling bond sites.
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Figure Captions

Figure 1. Temperature programmed desorption spectra showing that XH2 (a) +

H(a) -+ XH3(g) recombination processes occur for NH3 and PH3 on the

Si(100)-(2xl) surface (A), but are absent on the Si(l I l)-(7x7) surface

(B). The heating rates employed were I K/s for the ammonia desorption

spectra, 1.6 K/s for PH3 desorption from Si(1l I )-(7x7) and 2.0 K/s for

PH3 desorption from Si(100)-(2x 1).

Figure 2. Schematic representation showing various bonding sites on the Si(l 11)-

(7x7) and Si(100)-(2x 1) surfaces. Also shown is the dissociation

pathway which is proposed to occur on the Si(l I I)-(7x7) surface - XH2

decomposition accompanied by the rupture of the strained adatom

backbond, followed by insertion of the -NH or -PH species.
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Comparison of the Thermal. Desorption of NH3

and PH3 from Si(1 00)-(2x1) vs. Si(l111)-(7x7)
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